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Abstract—The use of electric load data within power engi-
neering applications is critical. Such data often contain missing
observations, especially higher resolution datasets important
for detailed modeling and simulation. Missing data frequently
are handled by replacement with new values, in other words
imputation. However, most readily available imputation methods
will perform unsatisfactorily on electric load data when many
successive observations are missing as they cannot capture the
periodic variation. As well many methods only provide single
point estimates, allowing for no assessment of probabilistic
characteristics of the missing data. In this study a new imputation
method is proposed that captures the periodic variation common
in high resolution load data, as well as generate probabilistic and
point estimates for the missing data. The method is evaluated on
three real-world high resolution load datasets and compared with
a typical imputation technique.

Index Terms—Electric Load, Imputation, Missing Data

I. INTRODUCTION

Electric load data are important in a variety of power
engineering applications, such as forecasting future electricity
demand [1], integrating renewable power systems [2] [3], or
sizing power system components [4] [5]. In addressing these
applications, electric load data will be used to inform models
or simulations of varying design and complexity. As such, the
problem of missing observations in electric load data can be
serious depending on the nature of the missingness and the
application the data is required for. For some applications a
higher resolution of data may have more utility, however it also
will be more likely to be incomplete. Missing data may arise
from malfunctions in sensors, disruptions in data-recording
software, other technical issues, or rejection of recorded data
due to obvious error.

The missingness within electric load data will typically be
characterized in two forms: (1) sporadic points where data is
missing and (2) periods of successive points of missing data,
or “gaps”. Sporadic missingness is relatively straightforward
to handle; interpolation or smoothing techniques will use the
local data surrounding the missing points to impute new data.
However, when there are large gaps of missing data (due
to a sustained malfunction, interruption of power, equipment
failure, etc.) interpolation or smoothing techniques will be
inadequate for high resolution load data. This is due to the
periodic variation, that is seasonality, inherent in load data;

across a large gap of missing data there will be cyclical vari-
ation unable to be captured by a simpler method. To capture
this behaviour more sophisticated techniques that employ the
time domain of the data are needed. However, as noted in [6],
many out of box techniques perform well imputing missing
data with trend or seasonality, but not both.

Another drawback to many readily available imputation
techniques is they only provide point estimates. Point estimates
will give no information regarding the certainty of the imputed
data, and generally will underestimate the variance of the
true data, described in [7] and demonstrated in [8] with a
multivariate air quality dataset. Depending on the application
for the incomplete data it may be desirable to have bounds on
the likely range of the imputations with associated confidence
levels. For example, consider a load dataset with a large gap
of missing data being used to model an isolated power system
for the purpose of designing a new solar plant. Predicting the
occurrences of community load varying outside the new plant’s
operating limits would be well served by knowing a likely
upper and lower bound on the imputed data. The process of
providing probabilistic estimates for missing data rather than
point imputations is known as Multiple Imputation (MI). The
basic idea behind MI is to generate many complete datasets
from the original incomplete dataset, then pool these complete
data into an average estimate with corresponding uncertainty
estimates about the average [9, pp. 19-20]. A driving idea
behind MI is “imputation is not prediction” [9, Sec. 2.6,
pp. 55-57]; instead of committing to a single imputation MI
generates a set of plausible estimates and quantifies their
certainty.

This study seeks to employ MI techniques to generate
probabilistic information about the imputed data. The proposed
method exploits the seasonality inherent in electric load data
through sub-sequences defined by the dominant seasonality
in the data, an approach used in typical seasonal time series
models. However, established methods cannot handle high
frequency seasonality so easily, and methods that have been
developed to do so are not uniformly accessible to all users for
imputation purposes. The proposed method seeks to provide
a more accessible framework for generating imputations for
high resolution seasonal data. This study is restricted to the
imputation of high resolution univariate load data, logged at



a one-minute period. Multivariate data are not guaranteed
to have sufficient correlation between variables to employ
popular imputation methods. Additionally univariate data may
be all that are available in certain applications due to cost
constraints or other barriers. This study also assumes no
historical data are available for similar reasons.

In Section II related imputation techniques are reviewed. In
Section III-A and III-B fundamental time series models are
reviewed and challenges with high frequency seasonality dis-
cussed. The proposed imputation method is detailed in Section
III-C. The proposed imputation method is then assessed and
discussed in IV with real world load data from three isolated
communities. In Section V some conclusions are drawn.

II. RELATED WORK

Imputation techniques that explicitly tackle univariate data
with large gaps of missing data are sparse in the literature,
particularly with respect to multiple imputation.

In [10] a technique is proposed to handle large gaps in
univariate data through exploiting the seasonality inherent
in a single variable within a cellular usage dataset to split
univariate data into multivariate data along the most relevant
cycle; the correlational structure in the new dataset is used to
justify feeding the new data into the well known multivariate
Multiple Imputation by Chained Equations (MICE) algorithm.
This approach was shown to outperform a default MICE
implementation with other variables in the datase, as well as a
Kalman filter. By employing MICE there is a well understood
probabilistic component to the imputed values.

In [11] large gaps of missing data within a large industrial
sensor dataset were simulated to study an iterative technique
that utilized the well known Seasonal Trend Loess (STL)
method. A gap of missing data were segmented, with seg-
ments iteratively imputed based on the trend and seasonal
components of the STL model; as each segment is imputed
the accuracy of the remaining segment imputations should be
improved. This technique was shown to outperform a default
STL decomposition and imputation, however the imputations
had no probabilistic interpretation.

In [6] a method that synthesizes the STL algorithm and a
seasonal moving window algorithm was presented, with an
explicit focus on large gaps of missing data. Before and after
a gap of missing data a window was placed and extended
such that non-mising data that had been de-trended (but not
de-seasonalized) with STL would be included; the window
is shifted throughout the remaining de-trended treated data
to find the closest match with past values with respect to
the root mean square error. The past data that best matched
the window are imputed directly. Once again there is no
probabilistic interpretation for the imputed data. Further, this
method assumes that the local data about the gap are good
predictors of the missing values, as well the imputed values
being already recorded data may lead to biased imputations.

In [12] a technique is developed to model time series data
with high frequency seasonality, although imputation is not
explicitly considered. Imputations could be generated through

the use of forecasting and backcasting, although this would
increase the time and complexity requirements for users.

With the techniques developed in [11] and [6] there was
no probabilistic interpretation. In [12] high frequency season-
ality is handled, but without considering imputation. In [10]
the probabilistic features come courtesy of using functions
included in the MICE package for R. While MICE is a popular
technique in some applications, the proposed method seeks to
reduce complexity and any barriers to understanding which
may be present when using advanced prepackaged techniques
such as MICE.

III. METHODOLOGY

A. Modeling Time Series

Modeling time series data requires specialized methods
compared to standard statistical tools. This is because past
values in a time series dataset are natural predictors of future
data, violating the independence assumption needed for typical
statistical modeling. A time series xt can be thought of as a
function of trend, seasonality, and error. These components
may be additive or multiplicative.

xt =

{
mt + st + εt

mtstεt
(1)

Where mt, st, and εt are the trend, seasonal, and error
components respectively. Trend is a slowly changing function
of t, seasonality is a component that repeats through the
data with a fixed period, and error is stationary in the sense
that the variance is finite, with mean and autocovariance
constant with respect to t. A critical step when modeling time
series is to remove deterministic components such that the
data which remains can be treated as random error, or some
function of random error via a structural time series model.
The fundamental structural models are autoregressive (AR)
and moving average (MA); with AR modeling dependence is
assumed in the realized values from the time series and in MA
modeling dependence is assumed in the error component of
the time series. The ARMA model considers dependence in
both realized values and error components. The order (AR(1),
MA(1), ARMA(2,3), etc.) of these models references the
amount of time lags the dependence is assumed over. An
overview of the notation is given in Table I.

B. Challenges with high resolution seasonal data

When considering the additive form of (1), the seasonal
component is assumed to be fixed across cycles. This is
frequently a poor assumption to make; in the context of this
study’s high resolution electric load data the ith minute of

TABLE I: Fundamental Time Series Models

AR(P) xt = ν + ϕpxt−1 + · · ·+ ϕpxt−p + εt

MA(Q) xt = µ+ εt + θ1εt−1 + · · ·+ θqεt−q

ARMA(P,Q) xt = µ+ εt + θ1εt−1 + · · ·+ θqεt−q +

ν + ϕpxt−1 + · · ·+ ϕpxt−p + εt



the jth day likely will not be the same as the jth + 1 day
and so on, although they will be highly correlated. A well
established method within the ARIMA framework (the “I”
refers to the order of integration of the model, the number of
differences taken to remove trend and ensure stationarity) to
address this is the SARIMA method (“S” refers to seasonal).
SARIMA assumes that the seasonal periods within the data
can be modeled as realizations from an ARMA process.
Stopping here would go too far from the additive model by
assuming the seasonal components are totally uncorrelated,
so the detrended non-seasonal components are fitted with
another ARMA process [13, Sec. 9.6, pp. 310-316]. However
many SARIMA processes, and other seasonal time series
models, are designed to accommodate simple seasonality with
a small periodicity [12]. High resolution electric load data
will have seasonality of a very high period; in the case of
minutely data, a daily periodicity of 1440. Existing methods
to handle the large periodicity may not be readily available
or interpretable for all users. For the problem of imputation
specifically, generating suitable data from these methods may
be cumbersome, potentially overly so for what would be just
an initial step in whatever application is required for the load
data.

C. Proposed Imputation Method

To illustrate the proposed algorithm the notation will con-
form to the dimensions of the data evaluated in this study. The
process is easily generalizable to univariate data of differing
dimensions. Consider an electric load time series xt measured
per-minute logged over a year, such that t = {1, . . . , 525600}.
Define the missingness of the data by,

{a, b} ∈ t, a < b and b− a = G (2)

where a and b are the end points of the missing gap, and G
is an integer defining the length of said gap. Subset the data
xt by seasonality such that

xt = Xij i = {1, . . . , 1440} j = {1, . . . , 365} (3)

where i and j refer to the minute and the day respectively.
This results in a new variable for every minute of every day.
Each new variable only takes a single point from a day, all
within-day variation is omitted and between day variation is
captured for each minute. However, due to the high resolution
Xi∗, Xi+1∗, . . . are typically extremely correlated.

To model the trend across the gap of missing data, a running
median is fitted for all Xi∗ giving an estimate of trend mi.
The running median’s smoothing parameter k is selected to
most effectively capture the overall movements in trend while
being wide enough to provide a trend estimate for the missing
data. For example, k = 31 corresponds to a running median
over 31 days. By reversing the subset operations in (2) on the
mi an estimate of the deterministic component mt and st for
the missing data will be obtained, shown in Fig. 1. Generating
an estimate of trend piecemeal across the seasonal components

Fig. 1: Trend and seasonality imputation

is a simple way to obtain an estimate of the raw data’s overall
trend, as well as the seasonality.

Let ei represent the residual data after accounting for the
trend,

ei = Xi∗ −mi (4)

where E(ei) = 0. Taken individually, the ei is assumed to
be stationary enough to model as independent and identically
distributed noise. However, the correlation between the ei has
not changed and will still be very large. In other words, the
detrended load over the days of the year will be very similar
from one minute to the next. To account for this, reverse the
subset operations in (2) on ei such that

εt = ϕεt−1 + δt (5)

where ϕ controls the correlation from one minute to another
and δt is an error term; note that while εt is treated as error
within (1), at this stage it is treated as realizations of a data
generating process. If ϕ = 1 then (5) is a random walk. This
is undesirable because the correlation is expected to be close
to but not exactly unity. While ϕ ̸= 1, (5) is an AR(1) process.

In order to generate imputations the stochastic component
of (4), δt, is estimated with respect to the minute i, and random
draws taken from the underlying probability density. This is
achieved through Kernel Density Estimation (KDE). KDE is
a well known approach to generate non-parametric probability
densities. KDE is used rather than a parametric density like the
Gaussian in order to flexibly capture non-typical behaviour in
the data, as well as bypass a potentially restrictive parametric
form for the stochastic component; what parametric density
is a good fit for one dataset may be a poor fit for others. To
generate the KDEs, take the difference of successive minutes
of detrended data,

di = ei+1 − ei (6)

such that when i = 1440, i+ 1 = 1 and E(di) = 0 for all
i. Note that through (6) it is assumed ϕ = 1, however since
the parameter of interest from (6) is Var(di) = σ2

δi
and it is



already known ϕ will be close to unity it is assumed to not
overly bias the result. KDE works through placing a scaled
symmetric probability density centered about each d ∈ di.
By summing the scaled densities, an estimate of the overall
density f̂δi for each di is obtained. Since straightforward
KDE will place a probability density over every datapoint,
outliers are removed by excluding all d ∈ di lying outside 5
Median Absolute Deviations (MAD) from the median of di;
the number of MADs was chosen to comfortably include all
the important information, while exclude clear outliers. It is
well known that the choice of scaled density in KDE matters
little relative to the width, or variability of said density [14,
Tab 3.1, p. 43]. A well-established rule of thumb is used to
automatically set this parameter [14, eq. (3.31), p. 48].

The solution for ϕ in the AR(1) process has a closed form
(7). To estimate ϕ, rearrange (7) into (8),

Var(εt) =
σ2
δ

(1− ϕ2)
(7)

ϕ =

√
Var(εt)− σ2

δ

Var(εt)
(8)

An estimate for Var(εt) is obtained through the squared
MAD, a robust measure of variance. The estimation of σ2

δ is
obtained by using (6) and taking the average of the sample
variance for all i; the data was already handled for outliers
with the density estimation so the non-robust sample variance
is fine to use.

All the pieces are in place to generate imputations for the
missing data. A summary of the procedure:

1. For electric load data xt with missingness as defined in
(2), subset data into Xij as defined in (3).

2. Obtain estimates of trend mi with respect to day j across
Xij , then reverse subset operations on trend estimates to
obtain an estimate of the deterministic component of the
missing data.

3. Take difference of data Xi∗ and mi to detrend and
generate residuals. Model correlation of residual terms
according to an AR(1) process given in (5).

3.1. Parametrize (5) firstly by estimating error component δ
with respect to minute i by taking differences between
the residual terms as in (6), then generating estimates
of density f̂δi .

3.2. Estimate ϕ through (8).
4. For all t ∈ [a, b], use parametrized (5) to generate εt∈[a,b].
5. Add generated εt∈[a,b] to deterministic component.

The above procedure can be extended easily to accommo-
date additional subsetting of the data. Within this study it
was noted that the characteristics of load on weekdays versus
weekends may be different enough to be modeled separately.
An additional layer of subsetting was used to do this within
the above procedure, details are omitted for brevity though
tweaks were minor.

For the remainder of the study, the proposed imputation
method will be referred as Seasonal Subset Median Imputation
(SSMI).

IV. DATA AND RESULTS

A. Generating the missing data

Complete load data from January to December logged at
a per-minute frequency was used from three separate remote
northern communities within the Canadian Territories. Missing
data are induced in the complete data, then imputations
from SSMI are compared to the actual values to assess the
imputation method. For all three communities, the amounts of
missing data induced are 2.5%, 5%, and 10%, giving a total of
9 scenarios to analyze. These gaps of missing data correspond
to approximately 9, 18, and 36 days consecutive days of
missing data. For each community, a random draw is taken
from t = {1, . . . , 525600} to center the gap where missingness
will be induced. If the center of the missing data gap is too
close to the extremities of t, then the missingness is extended
into the previous or subsequent year and the data reshaped.
Doing this is also important so that the running median has
enough information about the gap to successfully capture the
underlying trend and seasonality. However, this step imparts an
additional assumption on the imputation method: the statistical
characteristics of the load data do not greatly change from one
year to the next. Depending on the considered data this may
be a problematic assumption to make. The amount of missing
data also will have an effect on the smoothing parameter of
the running median, larger gaps of missing data will require
a larger smoothing parameter to provide estimates across the
gap.

B. Assessing the Imputations

To assess the performance of the imputed data, five metrics
are used.

1. Root Mean Squared Error (RMSE): The RMSE is the
square root of the average of the squared differences
between the imputed and true values, noted as ximpute
and xtrue respectively. The RMSE measures the overall
precision of the imputed values.

RMSE(ximpute, xtrue) =

√√√√ 1

G

G∑
g=1

(ximputeg − xtrueg)2 (9)

2. Mean Absolute Error (MAE): The MAE is the average
of the absolute differences between the imputed and
true values. Like RMSE, it is a measure of the overall
precision of the imputations, however it is less sensitive
to large deviations in the imputations as the differences
are not squared.

MAE(ximpute, xtrue) =
1

G

G∑
g=1

|ximputeg − xtrueg| (10)



TABLE II: Imputation Results

Gap Size Method Community A Community B Community C

RMSE MAE SIM CR AW RMSE MAE SIM CR AW RMSE MAE SIM CR AW

2.5 SSMI 21.3 16.8 0.93 91.9 75.9 13.9 11.1 0.90 93.1 49.9 22.1 17.6 0.93 91.3 76.1
NAD 21.8 17.3 0.93 - - 14.0 10.8 0.91 - - 22.3 17.7 0.93 - -

5 SSMI 21.7 17.3 0.94 94.1 81.6 13.7 10.7 0.91 94.3 53.3 26.2 20.5 0.92 89.1 82.0
NAD 24.9 19.7 0.93 - - 14.1 11.0 0.91 - - 23.0 18.0 0.93 - -

10 SSMI 24.7 19.8 0.93 93.4 88.9 15.0 11.8 0.90 93.2 55.9 35.5 28.4 0.90 80.9 90.5
NAD 26.6 20.7 0.94 - - 16.0 12.3 0.91 - - 42.3 32.3 0.89 - -

3. Similarity (SIM): The similarity function specifically
evaluates the ability of the imputation method to replicate
the true data. Results are scaled to [0, 1], with a value of
1 indicating a perfect replication of the actual data.

SIM(ximpute, xtrue) =
1

G

G∑
g=1

1

1 +
ximputeg−xtrueg

max(xtrue)−min(xtrue)

(11)
4. Coverage Rate (CR): The CR is the proportion of con-

fidence intervals estimated over the imputed data that
contain the true data. The CR should be close to the
nominal level of the underlying confidence intervals.
In [9, p. 52] it is quoted that a CR greater than the
nominal level is a “lesser sin” than a CR lesser than the
nominal level, the former indicating a wider dispersion
of estimates than the latter; the author recommends a
nominal level of 95% for the CR assessment. In contrast
to the RMSE, MAE, and SIM which quantify accuracy
in varying ways, the CR assesses the overall statistical
quality of the imputations. This is critical within the MI
framework, recall “imputation is not prediction”; the goal
is not to perfectly replicate missing data but to generate
a range of plausible possibilities.

5. Average Width (AW): The AW is simply the average
width of the confidence intervals estimated in the CR
statistic. Ideally the AW should be as small as possible
while keeping the CR close to the nominal level.

The number of imputations generated follows the suggestion
of [9, p. 60] at 200, chosen since it is desirable for the
purposes of this study to approximate the full distribution of
the underlying missing data. The relevant percentiles for each
imputed data point are calculated from the 200 samples to
generate the confidence intervals in the calculation of the CR
and AW measures.

The SSMI is further analyzed through comparison with
a straightforward and commonly used single imputation ap-
proach used to impute electric load data, the Nearest Average
Day (NAD) [15, p. 70]. The details may vary from application
to application, but for this study an average of the nearest
two weekdays and weekend days before and after the missing
data gap is taken, and then values in the gap imputed with the
calculated averages with respect to whether the value falls on
a weekday or a weekend.

C. Results and Discussion

In Table II the imputations are assessed according to the
five metrics, RMSE, MAE, SIM, CR, and AW. All instances
where SSMI or NAD outperformed the other the other were
bolded. The RMSE and MAE fluctuate steadily with respect
to the gap size in communities A and B, with a larger gap of
missing data leading to less accurate imputations on an order
of 1-3 kW for 5% to 10% gap size, and virtually no change
between 2.5% and 5% gap size. In contrast, the accuracy of
the imputations markedly declines in community C as gap size
increases. As well, the CR and AW perform poorly at 2.5%
and 5% gap sizes, and completely deteriorates at 10% gap
size. The CR and AW are satisfactory for communities 1 and
2, underperforming the nominal confidence interval coverage
of 95% in all cases but not overly so. Interestingly the CR
increases from 2.5% to 5% gap size in both community A
and B. The SIM performs best overall for community A and
worst for community B, but generally remaining consistent
between all three communities.

The accuracy of the imputations is acceptable for all three
communities despite marked worse performance in C. How-
ever, the CR deteriorating at 10% gap size is concerning;
further investigation will be needed to determine the cause
of the notable statistical underperformance of the imputations
in community C. Another point to note is that the smoothing
parameter k must increase as the gap size increases to provide
estimates of all the missing data. The k were chosen as 21,
31, and 45 for the 2.5%, 5%, and 10% respective gap sizes.
A future study will investigate the sensitivity of the selection
of the smoothing parameters.

When comparing the SSMI and NAD methods, note that
as NAD only produces single imputations, the probabilistic
measures are not applicable. Overall the SSMI outperforms
NAD, with a notable exception occurring for the 5% gap size
in community 3 when NAD outperforms SSMI in all three
non-probabilistic metrics. However, given the SSMIs problems
in community C as well as that NAD greatly worsens relative
to SSMI at 10% gap size, overall the SSMI outperforms the
NAD.

To highlight the visual performance of the proposed method,
a random imputed series is taken from a set of 200 for all
communities at the 5% gap size and plotted with the local
neighbouring data in Fig. 2, and the entirety of the data in
Fig. 3. The actual data are in black and the imputed data in



(a) Community A (b) Community B (c) Community C

Fig. 2: Snapshot of single imputed series from SSMI method for communities A - C and local surrounding data.

(a) Community A (b) Community B (c) Community C

Fig. 3: Single imputed series from SSMI method for communities A - C and all other data.

grey. The imputed series look satisfactory in Fig. 2, however in
Fig. 3c and to a lesser extent in Fig. 3a the lower bound of the
imputed data exceeds the local behaviour. While these figures
are considering only a single realization of the stochastic
component of SSMI, ideally this behaviour would not be
present. The greater variability of the imputed data in Fig. 3c
may be a clue as to the underperformance of the imputations
on a whole for community C in Table II.

V. CONCLUSIONS

Within this study a method for generating imputations
from high resolution seasonal load data was proposed. The
mathematical and statistical detail of the process was outlined
step by step. Real world data from three northern communities
were used to evaluate the proposed method, with missingness
artificially induced in the data to validate the imputations. The
results for the proposed method were largely encouraging,
with imputations generally following the deterministic and
stochastic characteristics of the true missing data. Comparing
the proposed method to an established imputation strategy
showed satisfactory results, with SSMI overall outperforming
the established method’s accuracy. However, it is evident
further investigation is needed to ensure the method is robust
to a greater variety of datasets. The role of the various
components of the imputation model on the final results would
also be of interest.

In future work, the proposed method will be refined and
directly evaluated against more complex imputation methods,
as well as forecasts and backcasts from models that explicitly
handle high frequency seasonality but are not necessarily
tailored to imputation. This comparison will assess not only

accuracy, but also the probabilistic characteristics of MI from
all considered methods.
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