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Abstract—This study investigates a general model for fuel
consumption of prime diesel generators within a set range of
loadings. The model is parametrized by the rated power output,
or sizing, of a generator. This research gives insight into generator
fuel consumption characteristics across a wider population of
generators to provide a general estimate of fuel consumption
for a given sizing. Manufacturer data sheets containing fuel
consumption measurements are collected online and through
electric power utilities in the Canadian territories for 40 unique
diesel generator sizings. The sizing group effects are accounted
for through a non-pooled and multilevel regression. Subsequent
estimates of linear parameters across generator sizings are
modelled through ordinary least squares to obtain the desired
model for fuel consumption. The generality and adequacy of
this model is investigated through simulation and selected fresh
data sources. The general model for prime diesel generator fuel
consumption serves as a useful estimate or approximation for
subsequent work that requires a general fuel efficiency estimate.

Index Terms—Diesel Electric Power Generators, Remote
Power Systems, Microgrid, Regression Modelling

I. INTRODUCTION

Diesel electric generators play a critical role within the
power generation industry. Many emergency or backup power
sources are guaranteed through diesel generators. As well, re-
mote communities and industrial operations are often isolated
from an interconnected grid, and require a reliable source of
electric power often met with diesel generators [1]. Diesel
generators are a robust, proven technology, and are capable
of providing sufficient adequacy, security, and reliability for a
broad range of power generation applications [2].

An essential characteristic of diesel electric power gener-
ators is fuel consumption over generator loading, known as
the heat rate. Knowing the rate at which generators consume
fuel allows for cost projection, modelling, and simulation to
be performed. For specific needs, data for a genset will be
readily available through public data-sheets or provided by
the genset manufacturer or distributor. In addition there exist
studies of specific genset fuel efficiency such as [3] or [4].
However, when conducting modelling, simulations, or appro-
priate sizing of generators, a general estimate of a generators
fuel consumption may be more useful. An approach of using
data from specific gensets may be lacking. Examples of studies
where a more general estimate of generator fuel consumption

may have been useful are [5], [6], and [7]. An energy-flow
model is developed for performance analysis and sizing for a
wind-diesel microgrid in [5]. An optimal sizing and location
scheme for remote solar-diesel systems is developed based on
economic, environmental, and technical factors to minimize
long run costs in [6]. Simulations to investigate multiple
operating strategies for wind-diesel and/or solar-diesel small
remote systems are investigated in [7]. However only a single
heat rate value is assumed to calculate savings in fuel expenses
in [7]. Fuel consumption data only from select generators are
used in [5]. The slope and intercept of the fuel consumption
curve for the modelling in [6] are taken from [4].

The fuel consumption curve is well understood to be gener-
ally linear [8] across constant speed generators, and is assumed
as such in popular software such as HOMER [9]. However,
the relationship between this curve and generator sizing is less
understood. Clearly there will be a causal relationship between
generator sizing and the fuel consumption curve, however the
exact nature of said relationship across a wider population of
gensets has not been well studied within the literature.

To this end, specific generator properties within the pop-
ulation of diesel generators had to be selected to ensure a
sufficiently applicable model. This study is restricted to prime
rated diesel gensets of 60 Hz frequency, which are common
in North America.

The goal of this study is to estimate a model for genset fuel
consumption as a function of loading, entirely parametrized by
the rated power output of a generator. The slope and intercept
of the linear fuel consumption curves are estimated across
a sample of genset sizings. Functional relationships between
the linear parameters and genset sizings are estimated and
investigated. A final general model is presented that creates
a fuel consumption curve entirely through rated genset power
output. The linear fuel consumption curve is given by,

F = b1 + b2P (1)

where F represents volumetric flow in L
h , P genset loading

in kW, with b1 and b2 the usual linear parameters of intercept
and slope, in L

h and L
kWh respectively. The fuel consumption

curve (1) can be transformed into a heat rate curve, given
in kWh

L . The heat rate is important as a measure of generator
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TABLE I: Considered Data

Genset
Sizing [kW]

Number of
Data points

Genset
Sizing [kW]

Number of
Data points

36 7 520 12
45 8 545 31
54 11 600 12
72 7 680 26
90 7 725 15
95 4 818 4

120 4 835 4
135 7 890 12

157.5 7 895 12
180 7 900 8
210 4 920 4
225 7 1045 12
250 7 1100 16
270 4 1135 7
320 18 1245 12
350 4 1286 4
365 20 1350 4
410 23 1365 4
450 4 1450 12
455 22 1600 11

efficiency, and is frequently utilized in assessing diesel electric
generator performance. The heat rate transformation is given
by,

Heat Rate =
P

F
=

P

b1 + b2P
(2)

and is a non-linear transformation. The goal of this research
to estimate b1 and b2 from a given population of diesel
generators to fit a general model describing fuel consumption
with respect to genset sizing.

II. DATA SOURCES

Generally there are two types of fuel consumption data
available for prime diesel generators based on sample size.
The first type has fuel consumption measurements available at
a larger sample size, measured at a fixed pattern of loadings,
typically across 10% and 100% of rated generator output. The
second type has a smaller sample size, and has fuel consump-
tion measurements at 50% 75% 100% or 25% 50% 75% 100%
of rated power output. These data categories will be referred
to as maximal and minimal data categories. Data-sheets with
minimal fuel consumption data are readily available from a
variety of sources, including manufacturers, distributors, and
third-party websites. Data-sheets with maximal fuel consump-
tion data are not readily available.

Select prime generator’s data-sheets were made available by
ATCO Electric Yukon, Northwest Territories Power Corpora-
tion, Yukon Energy Corporation, and Qulliq Energy Corpora-
tion that comprise the maximal fuel consumption data for this
study. The set of maximal data generators were used as a guide
to inform selection of remaining generator data sources. That
is, minimal data sources were selected to ensure a sufficient
range of data across genset sizings. No minimal data sources
were chosen beyond 300 kW above or below the highest and
lowest available maximal data genset sizing.
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Fig. 1: (a) Pooled fuel consumption data. (b) Boxplot of fuel
consumption grouped by generator sizings.

Throughout all datasheets used within this study, fuel con-
sumption data were available only from approximately 10% of
rated genset power output to 100%. Note that the linear fuel
consumption for all generators surmised earlier is typically
insufficient at some indeterminate lower loading threshold, as
a genset cannot consume a significantly positive or negative
amount of fuel when there is no load. Diesel gensets are also
known to experience drops in efficiency when overloaded [10],
implying the linearity assumption is insufficient for loadings
above 100% of rated output. Thus this study is only concerned
with estimating fuel consumption curves for loadings within
10% and 100% of rated output given the lack of data for
observations outside this range. There are 40 sizings of gensets
collected for this study, representing a total of 404 data points.
Table I provides further detail on the genset sizings as well as
a sample size at each level.

A plot of the pooled fuel consumption data is given in
Fig. 1a. The linearity of the data is immediately apparent,
however, consideration must be made of the group effect of
generator power rating. That is, the relationship between fuel
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consumption and genset sizing may have an effect on the
overall relationship between fuel consumption and loading in
the data. This is investigated in Fig. 1b, wherein boxplots
describing fuel consumption across genset sizings are shown.
The median fuel consumption increases, which is expected.
Additionally, the absolute variability increases substantially.
This is also expected, an 800 kW generator will have a larger
range of data than a 200 kW generator. However, in addition
to the expected behaviour in Fig. 1b there may be less obvious
group effects present.

III. MODELLING THE GROUP LEVEL DATA

A. Linear and multilevel regression approaches

The goal of this study is to estimate a model for genset fuel
consumption as a function of loading, entirely parametrized
by the rated power output of a generator. A regression on
the pooled data in Fig 1a. is the most simplistic approach for
assessing how fuel consumption varies with respect to loading,

Fm ∼ N (β0 + β1Pm, σ
2), m = 1, . . . , 404 (3)

where Fm denotes the mth fuel consumption in L
h , N

represents the normal distribution function, β0 and β1 are
intercept and slope parameters in L

h and L
kWh respectively,

Pm represents the mth loading in kW, and σ2 is the variance.
However this model ignores all group variation in the collected
data. That is, changes between fuel consumption across genset
sizing are not accounted for since all data are pooled together.
Another possibility is a regression on the non-pooled data.
This entails fitting a separate model at each group level,

Fkm ∼ N (β0k + β1kPkm, σ
2
k), k = 1, . . . , 40 (4)

where Fkm is the fuel consumption for the mth loading in
the kth genset sizing, Pkm is the load, and so on. This model is
superior to the pooled regression in that it accounts for group
variation in fuel consumption. A drawback of this approach
is it typically places too much emphasis on the group effects.
That is, for a particular generator sizing no information from
the other 39 sizings are incorporated into the model. Each fuel
consumption model with respect to generator sizing is given
equal importance regardless of sample size, data quality, or
other pertinent factors. This approach may overstate the effect
of rated power output on fuel consumption, in other words,
overfit.

The pooled and non-pooled regressions exist at opposite
ends of a spectrum in model specificity. In contrast, a mul-
tilevel model (also known as a hierarchical model or mixed-
effects model) exists as a compromise between the two ex-
tremes. Following the explanation given in [11], multilevel
regression is a generalization of typical linear regression,
where the regression coefficients are allowed to vary by
group effects in the model rather than being treated as fixed
constants. The linear parameters are assigned a probability dis-
tribution, wherein parameters of said probability distributions
are estimated from the data. In symbols,

Fm ∼ N (β0km + β1kmPm, σ
2)(

β0k
β1k

)
∼ N

((
µβ0

µβ1

)
,

(
σ2
β0

ρσβ0
σβ1

ρσβ0
σβ1

σ2
β1

))
(5)

where the linear parameters β0 and β1 are assumed to be
jointly normally distributed, such that µβ0

and σβ0
are the

mean and standard deviation of β0; µβ1
and σβ1

are the
mean and standard deviation of β1; and ρ is the correlation
coefficient between β0 and β1. The fitting process of (5)
differs from typical linear regression such that in addition
to the regression performed on the response and explanatory
variables, a regression between the k group variables and the
linear parameters β0 and β1 is performed. The result of this
distinction is that the multilevel regression estimates of β0k
and β1k are comprised of information from both the group
level effects and the pooled data.

A more compact matrix notation of (5) is used for clarity,

y = Xβ + Zb + e

b ∼ N (0,Σ), e ∼ N (0,R)
(6)

where y = Fm, X and Z are design matrices linking the
β regression coefficients and the b random predictors to each
observation in the data, with b and e representing independent
random variables. The matrices Σ and R are covariance
structures. The β0k and β1k parameters seen in (5) have been
separated into fixed (β) and random (b) components.

Similar to typical linear regression, a simple multilevel
regression approach assumes homogeneity of variance among
group level data. However, as shown in Fig. 1b. this assump-
tion is clearly violated by the data, and indeed is expected to
be violated. Thus the model in (6) is amended to accommodate
the heterogeneity of the group level variance. Following [12],
the variance function for (6) is defined as

Var(e|b) = σ2g2(µ,v, δ) (7)

where µ = E[y|b] and E is the expected value operator, v
is a matrix of variance covariates, δ is a vector of variance
parameters, and g(·) is a variance function. Referring to Fig. 1b
again, the variance seems to exhibit non-linear growth across
rated genset power. Thus the variance function specification
will be of the form,

Var(e) = σ2|v|2δ (8)

where δ are parameters to be estimated. Note that if linear
growth was observed δ would be fixed at 1

2 .
All model fitting is done through R statistical software [13].

Multilevel modelling is performed with the “nlme” package
[14]. The “nlme” package fits multilevel models through
a maximum likelihood or restricted maximum likelihood
procedure. The likelihood approach considers the regression
coefficients and variance parameters within the likelihood
function, whereas in the restricted approach only the variance
components are included in an initial likelihood function, with
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Fig. 2: (a) Density curves for multilevel and non-pooled regres-
sion estimates of intercept. (b) Density curves for multilevel
and non-pooled regression estimates of slope.

regression coefficients estimated in a subsequent step [15]. The
restricted likelihood approach is known to produce statistically
better estimates than the straightforward likelihood approach
[16]. Hence the restricted likelihood approach is used.

B. Model assumptions

Typical linear regression and linear multilevel regression
share similar assumptions regarding the homogeneity of vari-
ances and normality of error. The homogeneity assumption
was addressed in (8). The normality assumption is ignored.
The goal of this study is not to make predictive inferences upon
the wider population of diesel gensets; rather to estimate the
patterns found within fuel consumption data across a specific
range of genset sizings. Inferences regarding the normality of
the multilevel errors are of no concern within the study scope.

C. Investigation of multilevel and non-pooled estimates

Empirical density estimates for the estimated slope and
intercepts from the multilevel and non-pooled regression are
given in Fig. 2a and Fig. 2b. respectively. The density curve

Fig. 3: Contours of the heat rate curve in (2) as a function of
estimated slope and intercept range at a (a) 100 kW loading,
(b) 500 kW loading, (c) 900 kW loading, and (d) 1300 kW
loading.

for the multilevel estimates of intercept is marginally tighter
than the non-pooled regression estimates, where the density
curve for the multilevel estimates of slope is far tighter than
the non-pooled estimates. It is clear the non-pooled regression
gives a wider range of estimates than the multilevel approach.
These figures indicate that the non-pooled model is overfitting
the data by giving more importance to each genset sizing, as
anticipated. The variability of the non-pooled slope estimates
is particularly egregious; with the density curve far wider and
flatter. Hence the multilevel model’s estimates of slope and
intercept are selected to build the general model.

Recall the expression for the heat rate as a function of fuel
consumption in (2). Fig. 3 shows (2) as a function of the range
of the estimated intercept and slope coefficients. The contours
of the heat rate function illustrate how the range of estimated
slope and intercept parameters within this study affect said
heat rate. At the 100 kW loading the intercept parameter has
a greater effect on the heat rate, whereas at the 1300 kW
loading, the slope parameter has the greater effect. For the
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Fig. 4: Multilevel regression estimates of fuel consumption
(a) intercept and (b) slope across generator sizing. The dotted
vertical lines emphasize an apparent ”break” in the data.

range of the linear coefficients estimated in this study, the
importance of the slope and intercept with respect to the heat
rate “flips”. That is, accurate estimates of one linear coefficient
are no more important than another across a wider range of
sizings. However this does imply the accuracy of the intercept
parameter is more important for smaller sized gensets, whereas
the accuracy of the slope parameter is more important for
larger sized gensets.

IV. GENERAL FUEL CONSUMPTION MODEL

A. Fitting the general model

Consider Fig. 4a and Fig. 4b, which show the fuel consump-
tion slope and intercept estimates against genset sizing. Note
that despite the heterogeneity of the variance being accounted
for in (6), the variability of the linear coefficients appears to
be non-constant with respect to genset sizing. Upon closer
inspection however, the fit for both intercept and slope may
be comprised of two distinct linear relationships, partitioned
by the dotted vertical lines. This possibility is interesting in

that it suggests some characteristic that differentiates genset
fuel consumption about the 600 kW sizing. However caution
must be used before ascribing too much importance to this
feature of the data. The purpose of this study is to fit a
general model of fuel consumption parametrized by genset
sizing. There is convincing evidence of a broadly negative and
positive relationship with the slope and intercept respectively
across genset sizing. Accounting for the seeming break in the
fit about 600 kW would be a case of over-fitting within this
study’s scope, especially lacking any satisfactory explanation
for the pattern beyond what is seen in the presented data.

Linear fits estimated through ordinary least squares are
employed to model the fuel consumption slope and intercept
across genset sizings,

slope : b2 ∼ N (β0 + β1G, σ
2
slope) (9)

intercept : b1 ∼ N (β0 + β1G, σ
2
int) (10)

such that G represents genset sizing, with b1 and b2 the
linear coefficients for heat rate in (1). Using the results from
these fits, a general model for fuel consumption as a function
of genset sizing is,

F = (β0int + β1intG) + (β0slope + β1slopeG)P (11)

β0int = 3.63719
β1int = 0.02031

}
b1

β0slope = 0.25098
β1slope = −1.1827× 10−5

}
b2

where P is a corresponding set of loadings P ∈ [0.1 ·G,G].
Recall that all datasheets used within this study provided fuel
consumption data to a minimum of 10% and a maximum of
100% of rated power output.

B. Validity of the general model

Despite the potential violation of homogenous variance and
linearity in the slope and intercept models, the normality
assumption upon the error specified in (9) and (10) is useful
to assess in validating the standard error of the regression
coefficients. The Shapiro-Wilks (S-W) procedure is a popular
and powerful test of univariate normality [17]. Using this test
upon the residuals of (9) and (10) results in a failure to reject
the normality assumption. Standard errors are given for the
coefficients of (9) and (10) along with the p-values from the
S-W test on both model’s residuals in Table 2.

The potential of overfitting in (11) is investigated through
a Monte Carlo cross validation. The slope and intercept
estimates are randomly partitioned into 8 subsets of size 5.
Of the 8 subsets, 7 are used as training data to refit (9)
and (10). The remaining subset is used as validation data.
The mean absolute error is used to evaluate the difference
between the trained models and validation data. This process is
repeated with 10,000 replications, representing approximately
1.5% of the possible permutations. The results in Fig. 5 show
a consistent spread about a mean error of 6 L

h .
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Fig. 5: Mean absolute error of Monte Carlo cross validation
on (11).

TABLE II: Statistical parameters of (9) and (10)

Model (9) Model (10)

Slope Intercept Slope Intercept

Standard Error 2.5×10−3 1.9 2.1×10−6 1.6×10−3

P-Value 1.7×10−6 ≈ 0 7.6×10−10 0.06

S-W P-Value 0.33 0.79

C. Applying the general model

The non-linear transformation from fuel consumption to
heat rate curve shown in (2) is applied to (11). To provide
an illustrative assessment of the general model, new man-
ufacturer data from a 925 kW prime diesel genset in [5]
and experimental data from a 190 kW, 320 kW, and 457
kW prime diesel genset in [3] are compared to the general
model’s estimated curve. Fig. 6 shows the comparison, with
the general model fit given as a solid line, the fresh data
being the dashed line, and 99% confidence intervals given
by the dotted lines. Note the confidence interval estimates
are supported by S-W test’s failure to reject the normality
assumption for (9) and (10). The confidence intervals represent
a range that comprises 99% of the general model’s fits across
hypothetical indefinite samples from the entire population of
prime diesel generators within the prescribed loading range of
genset sizings in this study. The general model is observed to
have close approximations of the experimental data in (a) and
(c), and less accurate approximations of the experimental data
in (b) and the manufacturer data in (d). Both curves for the
fresh data fall outside the 99% confidence interval in (b) and
(d), however the approximation is still reasonably accurate.
Note the abnormal behaviour in the experimental data in (b),
the authors in [3] theorize the drop in efficiency could have
been due to complications after a firmware update on the
generator.

V. CONCLUSIONS

The general model of prime diesel generator fuel consump-
tion parametrized by generator sizing has promise as a simple
and convenient method to obtain fuel curves and subsequent
heat rates for diesel gensets. Among the selection of gensets
within this study, a relationship is identified between the slopes
and intercepts of fuel consumption curves with respect to
genset sizing. This was expected as genset sizing has an ob-
vious relationship to genset fuel consumption. However, to fit
the general model an explicit functional relationship between
the fuel consumption linear parameters and genset sizing is
needed. A multilevel regression process is compared to a more
simplistic non-pooled regression to generate estimates for the
slope and intercept of the fuel curves with respect to genset
sizing. The multilevel regression proves superior through less
overfit estimates. The multilevel regression’s estimates of slope
and intercept are shown to have a complementary role in
affecting the heat rate.

A negative and positive linear trend is fit to the estimates of
the fuel consumption curve’s slope and intercept against genset
sizing. There is a possibility of a more complex linear structure
underlying the relationship between the fuel consumption
slope and intercept and genset sizing, however in the interest
of model parsimony only an overall linear trend was modelled.
The linear fits of slope and intercept are used to parametrize
a general model for fuel consumption. This general model is
investigated through a Monte Carlo cross validation, which
shows no serious concerns for model overfit.

The general model’s ability to approximate new data is
investigated. A combination of experimental and manufacturer
diesel generator data is compared to the general model’s curve.
The results are generally acceptable, with 2 of 4 fits being
very good approximations, fitting within the 99% confidence
bounds.

The model estimated within this study is useful as a general
estimate for a prime diesel generator’s fuel consumption at a
particular sizing. Simulations or modelling of diesel-integrated
systems may be better served using this study’s estimates of
fuel consumption slope and intercept with respect to sizing
to approximate fuel consumption instead of ad-hoc methods.
The results from this research may be further studied and
contrasted with additional validation data sources, or a similar
modelling approach may be applied to a wider or deeper
population of diesel generator sizings.
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Fig. 6: Comparisons of new genset data to general fuel consumption model results. (a) compares a 190 kW genset, (b) compares
a 320 kW genset, (c) compares a 457 kW genset, and (d) compares a 925 kW genset. The model has very close approximations
for (a) and (c), and less close but still reasonable approximations for (b) and (d).
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