

Will there be an ice bridge this winter? Predicting spatio-temporal freeze-up patterns along the Yukon River, Canada

25th IAHR International Symposium on Ice, Trondheim, Norway November 23, 2020

Benoit Turcotte, Ph.D., P. Eng.

Outline

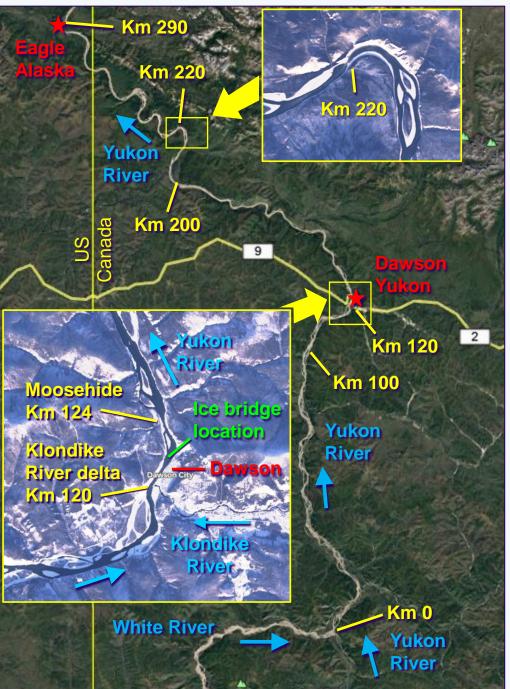
- 1. Challenge and objectives
- 2. Theoretical background
- 3. Research area in Canada
- 4. Methodology
- 5. Results
- 6. Discussion

1. Challenges and objectives

- No ice cover in 2014 and from 2016 to 2018
- Long term objective:
 Sustainable mitigation
 (find a way to ensure safe winter crossing at Dawson)
- Short term objective: Improve our understanding (explain freeze-up dynamics)

2. Some theory about river ice formation

In large, low-gradient rivers:


- Cold weather
- Water cooling down to 0°C
- Ice production
 - Border ice
 - Frazil
- Drifting ice chocking by border ice
- Congestion and bridging
- Full ice cover formation
 - Local thickening by submergence
 - Upstream progression by interception
- Resilient open-water leads immediately downstream of bridging locations (nothing to intercept)

3. Research area

Some facts:

- Dawson: 2,000 people
- Tr'ondek Hwech'in Traditional Land
- Average annual T_{air} = 4°C
- Winter intensity = 3500 CDDF
- Yukon R. watershed = 264,000 km²
- Late winter flow = 400 m³/s

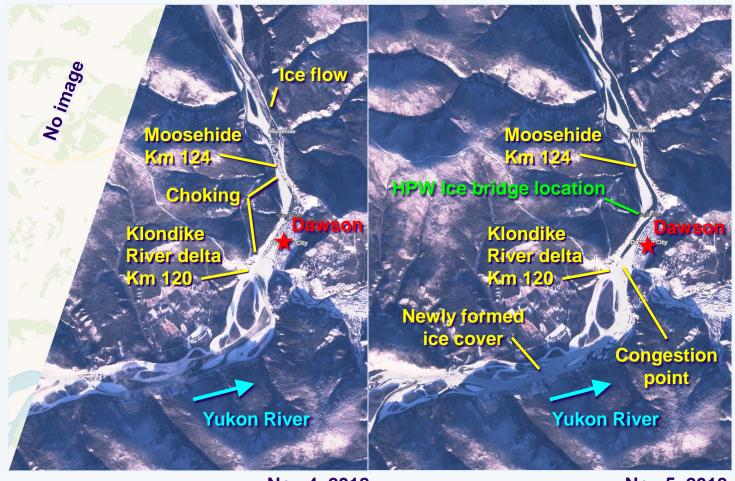
4. Methodology

- ➤ Use satellite (S1, S2, RadarSAT2, L8) observations to document freeze-up along 300 km of the Yukon River
- Identify dominant ice congestion locations
- Relate freeze-up dynamics to simple hydrometeorological indicators
- Create a simple model that predicts freeze-up timing and patterns

5. Results

Dominant ice congestion locations from 2013 to 2018:

- Km 220 (channel bend + constriction)
- Km 124 (just downstream of Dawson)
- Km 120 (Klondike River delta, just upstream of Dawson)
- Km 0 (White River delta)

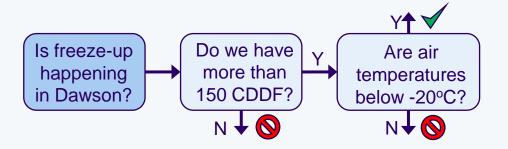


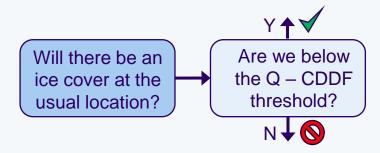
Nov 2, 2018

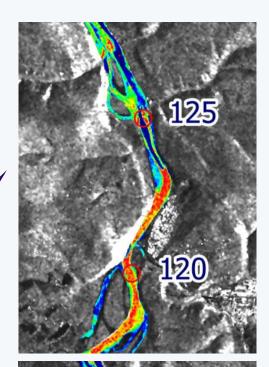
Nov 4, 2018

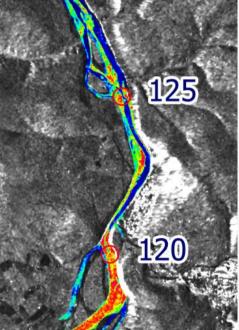
5. Results

Cause of open water at Dawson: Dominance of congestion at Km 120 over Km 124

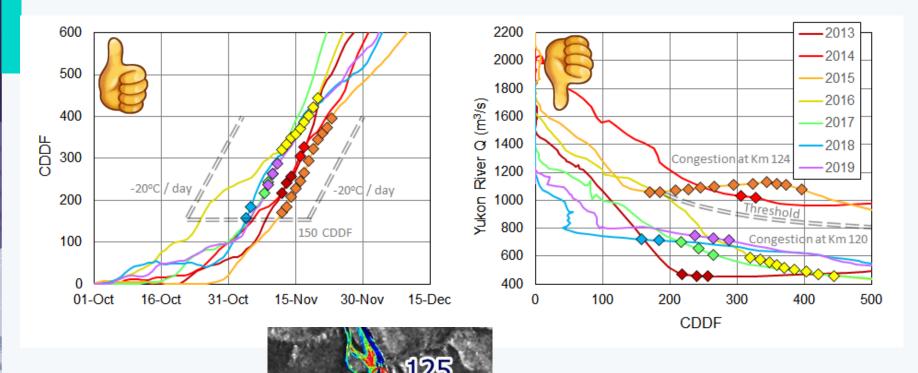

5. Results


Cause of open water at Dawson: Dominance of congestion at Km 120 over Km 124


No ice in flow Ice bridge location Consolidated ce cover 110 110 115 Yukon River Yukon River


5. Model

Air temp. (CDDF) and estimated discharge (Q) to define empirical thresholds



0

5. Model results

Nov 2019

6. Discussion

- Improved understanding of freeze-up processes
- Still some uncertainty about initial congestion pattern
- Covid19 bonus: High Q in Nov 2020 and the ice cover did form at Dawson, but it was the freeze-up front migrating all the way up from Km 220

Needs:

- Longitudinal profile (slope vs. km)
- Other heat budget parameters (e.g., wind)
- Hydraulic conditions monitoring or simulation
- A parallel discussion about mitigation can happen

Nov 2020

Thank you

